6,259 research outputs found

    Transient dynamics of molecular devices under step-like pulse bias

    Get PDF
    We report first principles investigation of time-dependent current of molecular devices under a step-like pulse.Our results show that although the switch-on time of the molecular device is comparable to the transit time, much longer time is needed to reach the steady state. In reaching the steady state the current is dominated by resonant states below Fermi level. The contribution of each resonant state to the current shows the damped oscillatory behavior with frequency equal to the bias of the step-like pulse and decay rate determined by the life time of the corresponding resonant state. We found that all the resonant states below Fermi level have to be included for accurate results. This indicates that going beyond wideband limit is essential for a quantitative analysis of transient dynamics of molecular devices

    Ixazomib enhances parathyroid hormone-induced β-catenin/T-cell factor signaling by dissociating β-catenin from the parathyroid hormone receptor.

    Get PDF
    The anabolic action of PTH in bone is mostly mediated by cAMP/PKA and Wnt-independent activation of β-catenin/T-cell factor (TCF) signaling. β-Catenin switches the PTH receptor (PTHR) signaling from cAMP/PKA to PLC/PKC activation by binding to the PTHR. Ixazomib (Izb) was recently approved as the first orally administered proteasome inhibitor for the treatment of multiple myeloma; it acts in part by inhibition of pathological bone destruction. Proteasome inhibitors were reported to stabilize β-catenin by the ubiquitin-proteasome pathway. However, how Izb affects PTHR activation to regulate β-catenin/TCF signaling is poorly understood. In the present study, using CRISPR/Cas9 genome-editing technology, we show that Izb reverses β-catenin-mediated PTHR signaling switch and enhances PTH-induced cAMP generation and cAMP response element-luciferase activity in osteoblasts. Izb increases active forms of β-catenin and promotes β-catenin translocation, thereby dissociating β-catenin from the PTHR at the plasma membrane. Furthermore, Izb facilitates PTH-stimulated GSK3β phosphorylation and β-catenin phosphorylation. Thus Izb enhances PTH stimulation of β-catenin/TCF signaling via cAMP-dependent activation, and this effect is due to its separating β-catenin from the PTHR. These findings provide evidence that Izb may be used to improve the therapeutic efficacy of PTH for the treatment of osteoporosis and other resorptive bone diseases
    • …
    corecore